Research Submission

The Relative Efficacy of Phenothiazines for the Treatment of Acute Migraine: A Meta-Analysis

Anne-Maree Kelly, MD, FACEM; Tracy Walcynski, MBBS; Barry Gunn, MBBS, FACEM

Objective and Background.—Ranges of agents are used in the emergency departments to treat migraine headache. Some experts suggest that phenothiazines are among the most effective; clinical trials have been small with varied results. We performed a systematic review and meta-analysis to determine the relative effectiveness of phenothiazines compared with placebo and other active agents for the treatment of acute migraine.

Methods.—We searched MEDLINE, EMBASE, CINAHL, Cochrane database, and international clinical trial registers for randomized controlled trials comparing parenteral phenothiazines with placebo or another active parenteral agent for treatment of acute migraine in adults. The primary outcome was relief of headache, and secondary outcome was clinical success. Analysis was for phenothiazines vs placebo, pooled other active agents, and metoclopramide for each outcome. Odds ratios (ORs) were calculated and pooled by using a random effects model (RevMan v5).

Results.—Thirteen trials were appropriate and had available data. Phenothiazines were compared with placebo in 5 trials and to another active agent in 10 (metoclopramide 4). Phenothiazine was more effective than placebo for headache relief (OR 15.02, 95% confidence interval [CI] 7.57-29.82) and clinical success (OR 8.92, 95% CI 4.08-19.51). Phenothiazines were more effective than other agents combined (OR 2.04, 95% CI 1.25-3.31) and the metoclopramide subgroup (OR 2.25, 95% CI 1.29-3.92) for clinical success, but no differences were found for headache relief. The clinical success rate of phenothiazines was 78% (95% CI 74-82).

Conclusion.—Phenothiazines are more effective than placebo for the treatment of migraine headache and have higher rates of clinical success than other agents against which they have been compared.

Key words: migraine, pharmacotherapy, phenothiazine

Abbreviations: CI confidence interval, ED emergency department, N number, OR odds ratio, NICS National Institute of Clinical Studies Australia

(Headache 2009;49:1324-1332)

Migraine is a common condition. Most migraine headaches are managed by the patient and/or com-

From the Joseph Epstein Centre for Emergency Medicine Research at Western Health, St. Albans, Vic., Australia (A.-M. Kelly); Department of Emergency Medicine, Western Health, St. Albans, Vic., Australia (T. Walcynski and B. Gunn).

Financial support: Departmental funds only.

Address all correspondence to A.-M. Kelly, Joseph Epstein Centre for Emergency Medicine Research at Western Health, Sunshine Hospital, Furlong Road, St. Albans, Vic. 3021, Australia.

Accepted for publication March 26, 2009.

munity family doctor; however, a small proportion fails to improve and seeks treatment at emergency departments (ED). In Australia there is considerable variation in ED treatment of migraine. A recent study found that the most commonly used agents in the ED were metoclopramide (alone or in combination) 43%, phenothiazines 36%, and paracetamol (alone or in combination) 38%, with aspirin used in 21% of cases and parenteral opiates in 12% (NCIS, unpublished data). Parenteral opioids are the most commonly used agents in US and Canadian ED.^{1,2}

Conflict of Interest: None

The National Institute for Clinical Studies (NICS) has published evidence-based guidelines for the treatment of migraine in Australia.³ They recommend parenteral phenothiazines (chlorpromazine, prochlorperazine) or sumatriptan for patients with moderate to severe symptoms. It also strongly discourages use of opiates, in particular pethidine (meperidine). Despite this recommendation, uptake of phenothiazines as first line treatment has been only moderate (NICS, unpublished data). A possible explanation is that physicians are not convinced of their efficacy. Clinical trials of phenothiazines to date have been small, and some have had conflicting results. We performed a systematic review and metaanalysis to determine the relative efficacy of phenothiazines compared with placebo and other active agents for the treatment of acute migraine.

METHODS

Study Design.—We undertook a systematic review and meta-analysis to determine the efficacy of parenteral phenothiazines compared with placebo and to other parenterally administered active agents for the treatment of acute migraine.

We searched MEDLINE, EMBASE, CINAHL, the Cochrane database, and international clinical trial registers for randomized controlled trials comparing parenteral phenothiazines with placebo or another active parenteral agent for the treatment of acute migraine in adults from earliest indexing until December 31, 2008. We used the terms "migraine" or "headache" and "phenothiazine" or "chlorpromazine" or "prochlorperazine" and limited to outputs to therapeutics and clinical trials. In addition, we searched for similar systematic reviews and metaanalyses and used the PubMed "related articles" feature for all identified trials. Where studies were recorded as "completed" on clinical trials registers but not yet published, we attempted to contact the chief investigators to obtain data.

Studies were selected for inclusion if they were randomized controlled trials of a parenterally administered phenothiazine (chlorpromazine, prochlorperazine, and methotrimeprazine) vs either placebo or an active parenterally administered comparator for the treatment of acute migraine. Studies were considered to have studied acute migraine if they used the defining criteria established by the International Classification of Headache Disorders⁴ or if a reasonable attempt had been made to include migraine headaches rather than all benign headaches. Use of the term "physician diagnosed migraine" or uses of defined criteria attempting to accurately identify migraine were considered reasonable attempts to discriminate migraine headache from benign headache. Studies were only included if they presented data on headache intensity/ clinical outcome within 2 hours of treatment and were published as a peer-reviewed short report or original research paper. Data presented only in abstract form were excluded.

Data Collection and Processing.—One author (A.-M.K.) screened all abstracts identified by the search for potential eligibility. If eligibility was possible, the article was requested and submitted to 2 other authors for review (T.W., B.G.). Primary data abstraction was performed by 2 of the study authors (T.W., B.G.). Disagreements were resolved by consensus when possible or by review of a third author (A.-M.K.).

Outcome Measures.—The primary outcome was relief of headache. Secondary outcome was clinical success as defined by the authors of each study. If clinical success was not reported, we included use of rescue medication as a proxy. A substudy of phenothiazines vs metoclopramide was also performed given the popularity of this agent as a treatment in recent studies (NICS, unpublished data).

The Jadad score was calculated for each study.⁵ Two reviewers (T.W., B.G.) independently recorded the Jadad score. Disagreements were resolved by consensus.

Primary Data Analysis.—In the primary analysis, we calculated the odds ratio (OR) and 95% confidence intervals (CIs) for headache relief in the phenothiazine group vs the comparator or placebo for each included study. We chose to take the more conservative approach of pooling studies with a randomeffects analysis. We performed all analyses using RevMan version 5 (The Cochrane Collaboration, Copenhagen, Denmark).

Author, year	Headache type	Phenothiazine, dose, route	Coadministered agents	Ν	Jadad score
Bigal et al 2002 ⁶	IHS criteria	Chlorpromazine, 0.1 mg/kg, i.v.	Nil	128	4
Coppola et al 19957	IHS criteria	Prochlorperazine, 10 mg, i.v.	Nil	46	5
Jones et al 19898	Physician-diagnosed	Prochlorperazine, 10 mg, i.v.	Nil	82	5
Jones et al 19969	IHS criteria	Prochlorperazine, 10 mg, i.m.	Nil	58	5
McEwen et al 1987 ¹⁰	IHS criteria and physician-diagnosed	Chlorpromazine, 0.04 mg/kg, i.m.	Nil	36	3

Table 1.—Characteristics of Included Trials with Placebo as Comparator

IHS, International Headache Society; i.m., intramuscular; i.v., intravenous.

RESULTS

From 236 citations, 19 clinical trials were identified, of which 13 were appropriate and had available data.⁶⁻¹⁸ Characteristics of the included trials are shown in Tables 1 and 2. Characteristics of excluded studies are shown in Table 3. Phenothiazines were compared with placebo in 5 trials and to another active agent in 10 (metoclopramide 4, meperidine 2, ketorolac 2, valproate/sumitriptan 1 each).

Regarding comparison with placebo, 4 studies reported outcomes for complete headache relief and 5 for clinical success. Phenothiazines were clearly superior to placebo with OR for complete relief of 15.02 (95% CI 7.57-29.82, Table 4) and for clinical success of 8.92 (95% CI 4.08-19.51, Table 5).

Regarding comparison with an active agent, 5 studies reported outcomes for complete headache relief and 10 for clinical success. Phenothiazines were more effective than other agents for clinical success (OR 2.04, 95% CI 1.25-3.31, Table 6), but no difference was evident for complete relief (OR 1.39, 95% CI 0.85-2.29, Table 7).

Pooling all studies, the proportion of patients reporting complete relief of headache with phenothiazines was 48% (95% CI 43-54), and the proportion reporting clinical success was 78% (95% CI 74-82).

When compared with metoclopramide, 3 studies reported the outcome of complete headache relief and 4 reported clinical success. Phenothiazines had greater rates of clinical success (OR 2.25, 95% CI 1.29-3.92, Table 8), but proportions with complete relief were similar (OR 1.60, 95% CI 0.89-2.87, Table 9).

DISCUSSION

Wide variation in the agents used in the ED to treat acute migraine has been reported (NICS, unpublished data;^{1,2}). Although several guidelines for the treatment of headache have been published, few give specific recommendations for treatment of migraine, particularly in the ED setting. Reasons given include lack of robust evidence. In 2006, the National Institute of Clinical Studies (Australia) published guidefor the treatment of migraine³ lines with phenothiazines cited as one of the recommended treatments for moderate or severe symptoms in the ED setting. Despite these recommendations, the use of phenothiazines for this migraine has been suboptimal, only being used 36% of the time in a recent study (NICS, unpublished data). A possible reason for this is that physicians are unconvinced about the effectiveness of phenothiazines. This meta-analysis found that phenothiazines are clearly superior to placebo for both the outcomes of complete headache relief and clinical success. We also found that, when compared with other active agents, phenothiazines had greater rates of clinical success. This was also true for comparison with the metoclopramide subgroup, although no difference in the likelihood of complete headache relief was found for either the pooled active agent group or the metoclopramide subgroup. One explanation for this is small sample size with only 298 patients studied for the pooled active agent comparison (146 active vs 152 phenothiazines) and 225 for the metoclopramide comparison (111 vs 114). Given the proportion with complete relief from phenothiazines

parat
Com
as
Agent
Active
with .
Trials
cluded
of In
icteristics (
Table 2.

tor

Author, year	Headache type	Phenothiazine, dose, route	Coadministered agents	Active comparator, dose	Coadministered agents	ر ع	Jadad score
Cameron et al 1995 ¹¹	IHS criteria/physician- diaonosed	Cameron et al 1995 ¹¹ IHS criteria/physician- Chlorpromazine, 0.1 mg/kg, i.v., diagnosed	Nil	Metoclopramide, 0.1 mg/kg, i.v. un to 3 doses	Nil	91	S
Coppola et al 1995 ⁷ Friedman et al 2008 ¹²	IHS criteria IHS criteria	Prochlorperazine, 10 mg, i.v. Prochlorperazine, 10 mg, i.v.	Nil Diphenhydramine, 20 mg	Metoclopramide, 10 mg, i.v. Metoclopramide, 20 mg, i.v.	Nil Diphenhydramine	46 77	in in i
Jones et al 1996' Kelly et al 1997 ¹³	IHS criteria Physician-diagnosed	Prochlorperazine, 10 mg, 1.m. Chlorpromazine, 12.5 mg, i.v.,	NII Metoclopramide, 10 mg	Metoclopramide, 10 mg, 1.m. Sumatriptan, 6 mg, i.m.	NII Metoclopramide,	43	n 1
Lane et al 1989 ¹⁴	Physician-diagnosed	Chlorpromazine, 0.1 mg/kg, i.v., un to 3 doses	Nil	Meperidine, 0.4 mk/kg up to Dimenhydrinate 3 doses i v	Dimenhydrinate	46	4
Seim et al 1998 ¹⁵ Shrestha et al 1996 ¹⁶ Stiell et al 1991 ¹⁷	Physician-diagnosed IHS criteria Defined criteria	Prochlorperazine, 10 mg, i.v. Chlorpromazine, 25 mg, i.v. Methotrimeprazine, 37.5 mg, i.m.	Nil Nil Nil	Ketorolac, 30 mg, i.v. Ketorolac, 60 mg, i.m. Meperidine, 75 mg, i.m.	Nil Nil Dimenhydrinate	64 30 74	4 v v
Tanen et al 2003 ¹⁸	IHS criteria	Prochlorperazine, 10 mg, i.v.	Nil	Na valproate, 500 mg, i.v.	Ňil	39	S

IHS, International Headache Society; i.m., intramuscular; i.v., intravenous.

found in this study of 48%, it would take approximately 800 patients to show a 10% difference in effectiveness between agents for this outcome.

Our findings support the recommendation of phenothiazines as effective agents for treatment of migraine in the ED. That said, only one of the studies of phenothiazine vs active agent reported a statistically significant difference. That study compared prochlorperazine with sodium valproate and reported an OR for clinical success of 11.25 (95% CI 2.52-50.27) favoring prochlorperazine.¹⁸ Although 7 of the remaining 9 studies that reported clinical success have ORs favoring phenothiazines, 95% CIs include results favoring both the phenothiazine and the other active agent, potentially because of small sample sizes. When the valproate study is excluded from the analysis, the results still favor phenothiazine over the other active agents (OR 1.73, 95% CI 1.13-2.65), suggesting that the finding of phenothiazines' superiority is robust.

Two phenothiazines were commonly used in the included studies: prochlorperazine and chlorpromazine 6 studies each (Tables 1 and 2). These agents have not been compared head-to-head. Pooled clinical success rates from the data used in this study are 81% for chlorpromazine (95% CI 75-86%) and 77% for prochlorperazine (95% CI 71-83%). These proportions are not statistically different (P = .42, chi-square).

We chose to study agents principally considered to be phenothiazines and did not include drugs with other principal actions and some phenothiazine-like additional effect such as promethazine, which we considered to be principally an antihistamine. This decision is open to question. There are no published studies of promethazine as a sole agent for the treatment of migraine headaches, so inclusion of promethazine would not change our findings. There is, however, a recent randomized trial compared prochlorperazine with promethazine for treatment of the broader benign headache group treated in ED.¹⁹ That study found that prochlorperazine resulted in a higher proportion of patients with a >25 mm reduction in visual analog scale pain score at 30 minutes (69% vs 39%, P = .006) and a greater rate of reduction in pain score (P = .013). Promethazine resulted in

Author, year	Phenothiazine, dose, route	Comparator	N	Results	Reason for exclusion
Ginder et al 2000^{20}	Prochlorperazine, 10 mg. i.v.	Magnesium, 2 g, i.v.	36	At 30 minutes, complete relief in 8/20 in prochlorperazine group compared with 2/16 in magnesium group	All acute headaches; not migraine
Bigal et al 2002^{21}	Chlorpromazine, 0.1 mg/kg, i.v.	Placebo	60	At 60 minutes, 21/30 in chlorpromazine group were pain-free compared with 6/30 in placebo group	Tension-type headache; not migraine
Weaver et al 2004^{22}	Prochlorperazine, 10 mg. i.v.	Droperidol, 2.5 mg. i.v.	96	At 30 minutes, 18/47 in prochlorperazine group had complete relief compared with 26/48 in droperidol group. 34/47 in prochlorperazine group had >50% reduction in VAS compared with 40/48 in droperidol group	All acute headaches; not migraine
Miner et al 2001 ²³	Prochlorperazine, 10 mg, i.v. or i.m.	Droperidol, 5 mg, i.m. or 2.5 mg, i.v.	168	At 60 minutes, 59/86 in prochlorperazine group had >50% reduction in VAS compared with 74/82 in droperidol group	Benign headache; not migraine
Bell et al 1990 ²⁴	Chlorpromazine, 12.5 mg, i.v., up to 3 doses	DHE, 1 mg, i.v., up to 2 doses; or lidocaine, 50 mg, i.v., up to 3 doses	76	8/24 in chlorpromazine group had complete relief compared with 6/26 for DHE and 2/26 for lidocaine	Time frame of pain outcome not specified
Callan et al 2008 ¹⁹	Prochlorperazine, 10 mg, i.v.	Promethazine, 25 mg, i.v.	70	At 60 minutes, 21/23 in prochlorperazine group had >25 mm reduction in VAS compared with 16/23 in promethazine group	Benign headache; not migraine

Table 3.—Characteristics of Excluded Studies

DHE, dihydroergotamine; IH, International Headache Society; i.m., intramuscular; i.v., intravenous; VAS, visual analog scale.

Bigal et al 2002 ⁶ 5 60 44 68 43.3% 20.17 [7.11-57.16] Jones et al 1989 ⁸ 5 40 31 42 34.8% 19.73 [6.17-63.08] Jones et al 1996 ⁹ 2 29 9 28 17.5% 6.39 [1.24-32.99] McEwen et al 1987 ¹⁰ 0 17 1 19 4.4% 2.84 [0.11-74.42] Total (95% Cl) 146 157 100.0% 15.02 [7.57-29.82]		· /	Odds ratio (noneve		Odds ratio (nonevent)		azine	Phenothi	bo	Place	
Jones etal 1989 ⁸ 5 40 31 42 34.8% 19.73 [6.17-63.08] Jones etal 1996 ⁹ 2 29 9 28 17.5% 6.39 [1.24-32.99] McEwen etal 1987 ¹⁰ 0 17 1 19 4.4% 2.84 [0.11-74.42] Total (95% Cl) 146 157 100.0% 15.02 [7.57-29.82]		m, 95% Cl	M-H, random, 95%		M-H, random, 95% CI	Weight	Total	Events	Total	Events	Study or subgroup
Jones et al 1996 ⁹ 2 29 9 28 17.5% 6.39 [1.24-32.99] McEwen et al 1987 ¹⁰ 0 17 1 19 4.4% 2.84 [0.11-74.42] Total (95% Cl) 146 157 100.0% 15.02 [7.57-29.82] Image: Close of the second secon					20.17 [7.11-57.16]	43.3%	68	44	60	5	Bigal etal 2002 ⁶
McEwen etal 1987 ¹⁰ 0 17 1 19 4.4% 2.84 [0.11-74.42] Total (95% Cl) 146 157 100.0% 15.02 [7.57-29.82]	_				19.73 [6.17-63.08]	34.8%	42	31	40	5	Jones et al 19898
Total (95% CI) 146 157 100.0% 15.02 [7.57-29.82]					6.39 [1.24-32.99]	17.5%	28	9	29	2	Jones et al 1996 ⁹
					2.84 [0.11-74.42]	4.4%	19	1	17	0	McEwen et al 1987 ¹⁰
Total events 12 85					15.02 [7.57-29.82]	100.0%	157		146		Total (95% CI)
								85		12	Total events
Heterogeneity: Tau ² = 0.00; Chi ² = 2.56, d.f. = 3 (<i>P</i> = .46); <i>P</i> = 0%	0 10	t	l <u> </u>	L		$l^2 = 0\%$? = .46); /	, d.f. = 3 (P	= 2.56	0.00; Chi ²	Heterogeneity: Tau ² =

Table 4.—Forest Plot of Phenothiazines vs Placebo for Complete Relief

more drowsiness. Rates of rescue medication and patient satisfaction were similar.

This study has some limitations that should be considered when interpreting the results. Publication bias may have influenced the data available for analysis. We attempted to minimize this risk by also searching clinical trials registers and attempting to contact authors of as yet unpublished results. Definitions of migraine used were not consistent between studies, with a significant number using physician-diagnosed migraine as their criterion. This may have resulted in nonmigraine headaches being included in some cohorts. Some studies used adjunctive agents in both phenothiazine and other agent

	Placel	bo	Phenothi	azine		Odds ratio (nonevent)		Odds	ratio (nonevent)		
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI		M-H,	random, 95% Cl		
Bigal et al 2002 ⁶	9	60	56	68	25.0%	26.44 [10.29-67.96]					
Coppola et al 19957	7	24	18	22	17.5%	10.93 [2.71-44.14]			— —	-	
Jones et al 19898	18	40	37	42	21.7%	9.04 [2.94-27.79]					
Jones et al 1996 ⁹	4	29	12	28	18.9%	4.69 [1.29-17.10]					
McEwen 198710	4	17	9	19	16.9%	2.92 [0.69-12.32]					
Total (95% CI)		170		179	100.0%	8.92 [4.08-19.51]					
Total events	42		132								
Heterogeneity: Tau ² =	0.41; Chi ²	= 8.25	, d.f. = 4 (<i>P</i>	, = .08);	<i>l</i> ² = 52%						10
Test for overall effect:	Z = 5.48 (P < .00	001)				0.01	0.1 Favours co	ntrol Favours e	10 xperimental	10

	Active a	igent	Phenothi	azıne		Odds ratio (nonevent)		Odds ratio (none	event)	
tudy or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% Cl		M-H, random, 95	5% CI	
ameron et al 1995 ¹¹	29	44	37	47	16.6%	1.91 [0.75-4.88]				
oppola et al 1995 ⁷	12	24	18	24	11.6%	3.00 [0.88-10.18]		+	-	
riedman etal 200812	29	38	32	39	13.3%	1.42 [0.47-4.30]				
ones et al 1996 ⁹	6	29	12	28	12.3%	2.88 [0.89-9.26]		+	-	
elly etal 1997 ¹³	19	20	22	23	2.7%	1.16 [0.07-19.80]				
ane etal 1989 ¹⁴	15	22	22	24	6.9%	5.13 [0.93-28.18]				
eim etal 1998 ¹⁵	29	35	25	29	9.7%	1.29 [0.33-5.11]				
hrestha et al 199616	14	15	13	15	3.4%	0.46 [0.04-5.75]				
tiell et al 1991 ¹⁷	27	37	26	37	15.0%	0.88 [0.32-2.41]			_	
anen etal 2003 ¹⁸	4	19	15	20	8.5%	11.25 [2.52-50.27]				
otal (95% CI)		283		286	100.0%	2.04 [1.25-3.31]				
otal events	184		222							
eterogeneity: Tau ² = 0	.14: Chi ²	= 11.85	, d.f. = 9 (<i>F</i>	? = .22);	<i>l</i> ² = 24%		0.01	0.1 1	10	10

Note: Clinical success is the defined event.

	Active a	gent	Phenothi	azine		Odds ratio (nonevent)		Odds ratio (nonevent)	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI	Year	ar M-H, random, 95% Cl	
Cameron et al 199511	11	44	12	47	27.6%	1.03 [0.40-2.65]	1995	95	
Shrestha et al 1996 ¹⁶	9	15	9	15	11.6%	1.00 [0.23-4.31]	1996	96	
Jones et al 1996 ⁹	4	29	9	28	14.2%	2.96 [0.79-11.09]	1996	96	
Kelly et al 1997 ¹³	8	20	9	23	16.5%	0.96 [0.28-3.28]	1997)7	
Friedman et al 200812	15	38	21	39	30.2%	1.79 [0.72-4.42]	2008	08	
Total (95% CI)		146		152	100.0%	1.39 [0.85-2.29]		•	
Total events	47		60						
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.49,	d.f. = 4 (P	= .65); <i>l</i> ²	² = 0%				- 40
Test for overall effect:	Z = 1.31 (F	P = .19)						0.01 0.1 1 10 Favours other agent Favours phenothiazine	10

Table 7.—Forest Plot of Phenothiazines vs Active Agents for Complete Headache Relief

Note: Complete headache relief is the defined event.

arms that may themselves have had some activity thus influencing the results. For the primary analysis, a pooled active agents group was used. It is possible, if not likely, that the active agents varied in effectiveness. It is possible that one or more agents have similar effectiveness to phenothiazines; however, with the exception of the metoclopramide group, numbers were too small to detect anything other than a large treatment effect. This study did not address adverse events because of unacceptable heterogeneity in reporting of these in the papers studied; however, we recognize that adverse event profile is an important aspect of clinical decision making for individual patients.

	Metoclopra	amide	Phenoth	iazine		Odds ratio (nonevent)		Odds ratio (nonevent)	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI		M-H, random, 95% Cl	
Cameron et al 1995 ¹¹	29	44	37	47	35.2%	1.91 [0.75-4.88]			
Coppola et al 1995 ⁷	12	24	18	22	17.0%	4.50 [1.17-17.30]			
Friedman et al 2008 ¹²	29	38	32	39	25.1%	1.42 [0.47-4.30]			
Jones etal 1996 ⁹	6	29	12	28	22.6%	2.88 [0.89-9.26]			
Total (95% CI)		135		136	100.0%	2.25 [1.29-3.92]		-	
Total events	76		99						
Heterogeneity: Tau ² = (0.00; Chi ² = 1	1.97, d.f.	= 3 (P = .5	68); <i>I</i> ² = 0	1%				4.00
Test for overall effect: 2	Z = 2.86 (P =	.004)					0.01	0.1 1 10 Favours control Favours experimenta	100 al

Note: Clinical success is the defined event.

Table 9.—Forest Plot of Phenothiazines	vs Metoclopramide for	Complete Headache Relief
--	-----------------------	--------------------------

	Metoclopramide		Phenothiazine			Odds ratio (nonevent)		Odds ratio (nonevent)		
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI		M-H, random, 95% CI		
Cameron et al 1995 ¹¹	11	44	12	47	38.4%	1.03 [0.40-2.65]				
Friedman et al 2008 ¹²	15	38	21	39	41.9%	1.79 [0.72-4.42]				
Jones et al 1996 ⁹	4	29	9	28	19.7%	2.96 [0.79-11.09]				
Total (95% CI)		111		114	100.0%	1.60 [0.89-2.87]		•		
Total events	30		42							
Heterogeneity: Tau ² =	0.00; Chi ² = ²	1.73, d.f.	= 2 (P = .4	(2); $I^2 = 0$	1%					4.00
Test for overall effect: 2	Z = 1.57 (P =	.12)					0.01	0.1 1 Favours control Favours exp	10 perimental	100

Note: Complete headache relief is the defined event.

CONCLUSION

Phenothiazines are more effective than placebo for the treatment of migraine headache and have higher rates of clinical success than other agents against which they have been compared.

STATEMENT OF AUTHORSHIP

Category 1

(a) Conception and Design

Anne-Maree Kelly; Tracy Walcynski; Barry Gunn

(b) Acquisition of Data

Anne-Maree Kelly; Tracy Walcynski; Barry Gunn

(c) Analysis and Interpretation of Data

Anne-Maree Kelly

Category 2 (a) Drafting the Article Anne-Maree Kelly

(b) Revising It for Intellectual Content

Tracy Walcynski; Barry Gunn

Category 3

(a) Final Approval of the Completed Article

Anne-Maree Kelly; Tracy Walcynski; Barry Gunn

REFERENCES

- 1. Vinson DR. Treatment patterns of isolated benign headaches in US emergency departments. *Ann Emerg Med.* 2002;39:215-222.
- Colman I, Rothney A, Wright SC, Zilkalns B, Rowe BH. Use of narcotic analgesics in the emergency department treatment of migraine headache. *Neurology*. 2004;62:1695-1700.
- Kelly AM, Holdgate A. Emergency Care Evidence in Practice Series, Emergency Care Community of Practice: Migraine in the Emergency Department. Melbourne: National Institute of Clinical Studies; 2006.
- Headache Classification Subcommittee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Headache Classification Committee of the International Headache Society. *Cephalalgia*. 1988;8(Suppl. 7):1-96.

- 5. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? *Control Clin Trials*. 1996;17:1-12.
- Bigal ME, Bordini CA, Speciali JG. Intravenous chlorpromazine in the emergency department treatment of migraines: A randomised controlled trial. J Emerg Med. 2002;23:141-148.
- Coppola M, Yealy DM, Leibold RA. Randomised, placebo-controlled evaluation of prochlorperazine versus metoclopramide for emergency department treatment of migraine headache. *Ann Emerg Med.* 1995;26:541-546.
- Jones J, Sklar D, Dougherty J, White W. Randomised double-blind trial of intravenous prochlorperazine for the treatment of acute headache. *JAMA*. 1989;261:1174-1176.
- 9. Jones J, Pack S, Chun E. Intramuscular prochlorperazine versus metoclopramide as a single agent therapy for acute migraine headache. *Am J Emerg Med.* 1996;14:262-264.
- McEwen JI, O'Connor HM, Dinsdale HB. Treatment of migraine with intramuscular chlorpromazine. *Ann Emerg Med.* 1987;16:758-763.
- 11. Cameron JD, Lane PL, Speechley M. Intravenous chlorpromazine vs. intravenous metoclopramide in acute migraine headache. *Acad Emerg Med*. 1995;2:597-602.
- Friedman BW, Esses D, Solorzano C, et al. A randomised controlled trial of prochlorperazine versus metoclopramide for treatment of acute migraine. *Ann Emerg Med.* 2008;52:399-406.
- Kelly AM, Ardagh M, Curry C, D'Antonio J, Zebic S. Intravenous chlorpromazine versus intramuscular sumatriptan for acute migraine. *J Accid Emerg Med*. 1997;14:209-211.
- 14. Lane PL, McLellan BA, Baggoley CJ. Comparative efficacy of chlorpromazine and meperdine with dimenhydrinate in migraine headache. *Ann Emerg Med.* 1989;18:360-365.
- 15. Seim MB, March JA, Dunn KA. Intravenous ketorolac vs. intravenous prochlorperazine for the treatment of migraine headaches. *Acad Emerg Med*. 1998;5:573-576.
- Shrestha M, Singh R, Moreden J, Hayes JE. Ketoroloc versus chlorpromazine in the treatment of acute migraine without aura. *Arch Intern Med.* 1996;156:1725-1728.
- 17. Stiell IG, Dufour DG, Moher D, Yen M, Beilby WJ, Smith NA. Methotrimeprazine versus meperidine

and dimenhydramine in the treatment of severe migraine: A randomised, controlled trial. *Ann Emerg Med.* 1991;20:1201-1205.

- Tanen D, Miller S, French T, Riffenburgh RH. Intravenous sodium valproate versus prochlorperazine for the emergency department treatment of acute migraine headaches: A prospective randomised, double blind trial. *Ann Emerg Med*. 2003;41:847-853.
- Callan JE, Kostic MA, Bachrach EA, Reig TS. Prochlorperazine vs. promethazine for headache treatment in the emergency department: A randomised controlled trial. *J Emerg Med*. 2008;35:247-253.
- 20. Ginder S, Oatman B, Pallack M. A prospective trial of IV magnesium and IV prochlorperazine in the treatment of headaches. *J Emerg Med.* 2000;18:311-315.

- 21. Bigal ME, Bordini CA, Speciali JG. Intravenous chlorpromazine in the acute treatment of episodic tension-type headache. *Arq Neuro-Psiquiatr*. 2002;60:537-541.
- 22. Weaver CS, Jones JB, Chisholm CD, et al. Droperidol vs. prochlorperazine for the treatment of acute headache. *J Emerg Med*. 2004;26:145-150.
- 23. Miner JR, Fish SJ, Smith SW, Biros MH. Droperidol vs. prochlorperazine for benign headaches in the emergency department. *Acad Emerg Med.* 2001;8: 873-879.
- Bell R, Montoya D, Shuaib A, Lee MA. A comparative study of three agents in the treatment of acute migraine headache. *Ann Emerg Med.* 1990;19:1079-1082.